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The square variance function of a finite-dimensional Hamiltonian H obeys
a maximum principle that leads to the determination of its maximum and
minimum eigenvalues. A systematic algorithm is presented that generates a
sequence of monotonically increasing values for the square variance. It is
shown that the method converges to the exact two-dimensional eigenvalue
problem determined by the lowest and highest eigenvalues. Preliminary
numerical results are briefly outlined.

INTRODUCTION

A familiar result of elementary quantum mechanics states that the
square variance of a finite-dimensional Hamiltonian attains its zeros for
the eigenvectors of the problem. However, the usefulness of investigating
the maximum of the square variance has not yet been recognized. The
consideration of this question turns out to be a matter of interest in its own
right; moreover it proves to be a practical tool for the numerical solution of
eigenvalue problems.

With the aid of the maximum principle investigated in Section 1 of
this paper, we can construct an iterative algorithm. As is demonstrated in
Section 2, this algorithm yields the maximum (minimum) eigenvalue of the
Hamiltonian. One need assume only that the trial vector contains nonvanishing
components of the corresponding eigenvectors.

This paper is concerned mainly with the presentation of the basic
theorems and their proofs. Detailed numerical results will be presented in a
sequel, but a short review of preliminary computational data is included in
this paper.
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1. THE MAXIMUM PRINCIPLE

In what follows we will be concerned with the expectation value and
square variance functions of a Hermitian operator H: R* — R",

Introduce ¥V, = R", the set of vectors whose norm is unity. Then we
define the functions

on: Va—>R

$u: Va—R .
%) > gal|x)): = (x|Hx) = (HD,
%) > dp(|x): = <H?, — (HD,?

As is well known from quantum mechanics, ¥ is a nonnegative function, the
zeros of ¥, occurring for the eigenvectors of H.

V, is a compact set. Since ¥ is continuous it must assume its maximum
(minimum) on V,. Our aim is to derive a theorem on the precise location of
these points.

To simplify the demonstrations let us define the probability plane W, as
the set of points with cartesian coordinates (wy, . . .; w,) that satisfy

Dw=1 0<w<1 W a.n
y=1

The eigenvalues of H constitute a finite ordered set
E,<:---<E, m<mn
E, = Epp, E, = Epox

The respective eigenvectors are denoted as

]E1,1>3 ceny IEl,k1>s seey ]Em,km>

Here k, stands for the degeneracy of E,. Identifying w, with the quantum
mechanical probability of finding E, in a measurement

Ky
wy(|x>): = Zl [KE, Alx)|?

@y and ¢ can be defined as functions on W, in a natural way.

m

ou(|x)) = WA(|x>) N

=1

>

(1.2)

m

Yallx>) = z w(16)- Ex? — (,z wA<1x>)-EA)

A=1



Maximum Variance 601

To state the maximum principle for ¢, we must specify the notion of
maximum. w € W,, is called a maximum of i if it is a maximum with respect
to a sufficiently small W, -neighborhood of . An absoclute maximum w,,
however, fulfills the condition

Pr(W) < Pr(Was) Ywe W,
Analogous definitions can be introduced for a minimum.

Theorem 1 (Maximum Principle).

(1.1) If m > 1, no inner point of W,, can be a minimum of ;. The
absolute minima are the zeros of .

(1.2) If m = 2 there exists a unique maximum of ¥ atw;, = w, = 1.

(1.3) If m > 2, no inner point of W,, can be a maximum of . The
absolute maximum is located on the boundary at w;, = w,, = .

(1.4) If m > 2, the only maximum of ¢y on the boundary of W, is
the absolute maximum.

(1.5) The only minima of ¢,; on W, (m > 2) are the zeros of .

The maximum principle describes two fundamental properties of .
First, it can be applied as an error measure for determining eigenvectors of H.
On the other hand, the problem of finding both the maximum and minimum
eigenvalue is solved by determining the unique maximum of .

Proof of Theorem 1. In the case m = 2 we have
Yug(w) = wy-E 2 + wy- B2 — (wy-E; + wy Ey)? (1.3)
subject to the subsidiary condition
Wy + Wy =1 (1.4)

One then finds a maximum at w; = w, = 4. The boundary points of
W, namely w; = 1 and w, = 1, are the zeros of ¢5. This proves statement
(1.2) and statement (1.1) in case m = 2.

Let us now deduce item (1.3). We have to solve the problem

D waE? — (z w,\-EA>2 = exir (1.5)
Dwa=1 (1.6)

This corresponds to the set of equations

a_i"(ZWAEAZ“ (ZW,\E,\)z-!-k'ZWA) =0, e=1...,m (1.7)

E?—2.DE, + k=0 (1.8)
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Here & denotes the Lagrange parameter, and the abbreviation D = > w)E,
was used. However, the system of m equations (1.8) leads to the apparent
contradiction

D = %(Eu + Ev)s Vu,v;u;ev

So evidently no extrema can occur for the inner points of W,,. Since W, is
compact, ¥;; attains its absolute maximum, which from the preceding
reasoning must be a boundary point. Recalling the definition of W,,, one sees
that w = (wy, ..., w,) is a boundary point if and only if w, = 0 for at least
one A. This means that w,,, € W, the absolute maximum of 5 on W, can
be regarded as an element of some properly chosen (m — 1)-dimensional
probability plane.

If m — 1 > 2 the same argument again applies. Proceeding this way by
induction, we arrive at a problem reduced to dimensionality two. From
proposition (1.2) we can then deduce that w,,, must have two coordinates
equal to 1 and all others zero. If we call the two occurring eigenvalues E,
and E_ (E, > E_) and their respective probabilities w, and w., then
straightforward computation yields

¢H(wabs) =%(E, —E.)

To achieve the absolute maximum we have to select E_ = E,, E, = E,.
This proves our assertion. As inner points cannot be extrema on Wy, m > 2,
statement (1.1) is trivially true.

The next point to be discussed is (1.4). Let us call the maximum in
question wy,,. Repeating the induction procedure applied before, we find
that wy,., must have coordinates w,(Wpex) = W_(Wnax) = 3.

Solving equation (1.6) for w, and inserting into equation (1.2) yields for
we W

Pu(w) = AZH wa- Ex2 + (1 - > w,\) -E,?

A#Fn

—(z WaEy + (1 - A#uWA) -E,,)z

A#p

(1.9)

Identity (1.9) expresses ¥ by a system of independent variables. The
proof will now be given by contradiction.
Let E, = E_ and suppose E, # E,, the maximal eigenvalue of H. Then

%bn

B = (E, — E)En— E_) >0 (1.10)

Ymax
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So in the direction of positive w,, the function increases locally on a
W,-neighbourhood of wy,,. This contradiction leads to E, = E,. By
differentiating with respect to w,, we can use similar reasoning to arrive at
E_ =E,. »

The proof of proposition (1.5) is straightforward, since minima are not
allowed in the interior of W,,.

Figure 1 illustrates the situation for W, One further remark on an
orthogonality theorem is in order. Let |max) € ¥, be a maximum vector of
Y. Then from the maximum principle we may write

imax) = |E)) + [En

(1.11)
H|max) = E;-|E> + En-|En>
A label of degeneracy has been suppressed for simplicity.
E, and E,, are functions of ¢(|max}) and t,bH([max}):
E, = gg(|max)) + [z(|max))]'/2 1.12)
E; = pa(|max)) — [x(lmax))2 '
of course
KEy|En> =0 (1.13)

Fig. 1. The plane W;. The lines of constant ¢y are represented qualitatively. They
visualize the assertions of the maximum principle.
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Now replace |max) by an arbitrary |x) € V,, and define |E,>, E;, |Ep),
E, by the expressions (1.11), (1.12). Then the orthogonality relation (1.13)
still holds, as can be seen by direct calculation. (We have to convince ourselves
that |x)> is not an eigenvector of H so that system (1.11) can be uniquely
solvable.)

2. A SYSTEMATIC ALGORITHM

The maximum principle leads us to the question of how to determine the
maximum of ;. A systematic algorithm is presented that provides a sequence
of monotonically ascending ¢ and, moreover, leads to the determination of
the eigenvalues E; and E,.

Consider an arbitrary |x,) € V,, which, however, must not be an
eigenvector of H. Given |x,> € V, define

%6+ 1>t = @r(|x)) 712 -(H] x> — @a((x>)- | x:) @10

The two-dimensional subspace generated by |x,> and |x;.,> is denoted by
I',, and we introduce the orthogonal projection operator

Py = |xu><xe] + |02k 41] (2.2)
Next denote
h,: =Ty — T,
h.: = P,.HP,

with eigenvalues e, * and e, ~ (e,* > e, 7), and the corresponding eigenvectors
le.*> and |e, ™) respectively. Furthermore we write

H|x,\1) = b0 1> + |R (2.3)
which defines the vector |R,>. Then the following theorem holds.
Theorem 2.
@) $x0) < dul(2) < -+ < dul60) < -+ < lim (%)

(2.2) $u(|x1>) = ¥u(|xk+ 1)) if and only if I, is an invariant subspace
under H.
(2.3) Assume

wi([xo>) # 0, wn([xo)) # 0 (2.4)

Then the following identities hold.
lim e,~ = Ey, lim e,* = E, 2.5)

k— o k0
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Proof of Theorem 2. (2.1) On account of equation (2.3), we find

Pa(|Xe+10) = Yu((x) + (Re R (2.6)

which proves the inequality in question. So (¥y(|x,>)) is a monotonically
ascending sequence, which converges since it is bounded. Its limit can be
represented by the series

s = i ga(0) = dall) + 3 CRlRO Xy
Item (2.2) is an obvious consequence of equation (2.6).
The proof of part (2.3) will be decomposed into several lemmas.
Lemma 1. The following sequences converge.
(pa(lxe), k even
(pa(|x0)),  k odd

We define the limits as

o1 = lim or(|xe),  keven
Po: = lim er(|xx),  kodd

Lemma 2. The following limits are eigenvalues of H.

et:=lm et =%(p. + @) + [ + Hpe — 9o)?* ]2

k—sw

‘ 2.8)
e : = lim e, = %'(‘Pe + 930) - [’7[’ + T}T(We - e?)0)2]1/2

Lemma 3. Unless E, = e* or E, = e~, the following limit condition
is satisfied.

lim wy(Jxe>) = 0 2.9

Lemma 4. The following limits of the sequences exist and are ali
different from zero.

(W+(lxk>)), k even, odd
w-(|x>)) % even, odd

Lemma 5. The following recursion formula hoids.

W)\(ka+ D) = (¢H(lxk>))_1 : WA(lxk>) (Ey — ?’H(!xk>))2 (2.10)
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The proof of Theorem 2, part (2.3), now proceeds as follows. An easy
consequence of statements (2.4) and (2.10) is

, 2.11)
wi(lxe>) # 0 Vk

On account of Lemma 2, e is an eigenvalue of H. By contradiction let
us assume et # E,. Then applying Lemmas 3 and 4, we arrive at

li = 2.12
kLrEO W+(|xk>) ( )

Select k, sufficiently large so that for all &k > k,
e” < ou(|x) < e* (2.13)

(see Lemma 3). Then (2.10), (2.11), and (2.13) yield

Wm('xk+1>) _ Wm(|xk>)(E,,, — ¢H(|xk>))2 Wm(‘xk>)
W (| X 4+1)) B wo(|xe) (et — eu(|x))? > D) (2.14)

The sequence

()

is hence strictly positive and monotonically increasing a contradiction with
respect to equation (2.12). Thus the assertion e* = E,, has been proved. The
proposition e~ = E; follows analogously.

3. PROOFS OF THE LEMMAS

Proof of Lemma 1. We prove that (pg(|x,.>)), k even, is a Cauchy sequence.
Going back to equations (2.1) and (2.3), we derive the relation

[Xer2) = Axe> + (‘/’H(lxk+1>))—1l2'|Rk> (3.1

with the abbreviation

A2 =1 — u(|Xes D)7t (R Ry

Consequently
|<PH(lxk+2>) - <PH(|x}c>)| = (¢’H(|xk+1>))_1'l<Rk|HRk> - <Rk|Rk>'9’H(1xk>)|
< (@u((xo2)) "1 (R Ri> - (B — En)
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For arbitrary even numbers &, k', we obtain

loa(|xe>) — eallx)] < @alx0))) ™t (En — Ey)- Z (RJRY (3.2)

The Cauchy property of (pg(|x,))), k even, now readily follows from the
convergence of series (2.7). A similar argument applies for the odd sequence.

Proof of Lemma 2. Remember the coordinate representation

w(lek+>) = (wl(lek+>)5 LICIRE) Wm(lek+>)) € Wm

Since W, is compact, the sequence (w(|e,*>)) possesses a convergent
subsequence (w(leix>)), say, whose limit point is denoted by #. From
continuity of ¢y it follows that

ou(?) = e*

On account of the inequality $y(|e,*D>) < (Ri|R;>, which is evident from
direct calculation, we deduce

‘/’H(W) = 0,

which implies that e* is an eigenvalue of H. The same reasoning applies for

e .

Proof of Lemma 3. It is evident that the sequence (w(|e, *>)) converges to
. For suppose it does not; then we can find a subsequence (w(|ey,>) which
remains outside an e-neighbourhood of # which itself contains a convergent
subsequence (W(|efu,>)). According to the proof of Lemma 2, its limit would
also be #, an apparent contradiction. So the sequence (w(|e, *>)) converges to
w. This means

,}im wy(lex™>) = 0, for E, # et

and correspondingly
klgg wy(lex>) =0, forE, # e
Let us write
x> = ap-lex*> + by-lex™>
So, up to a phase convention
wa(lx) = (@ [wallex ™ )Y + by [wa(lee™ D)2 (3.3)

Equation (3.3) leads in a straightforward manner to the desired result.
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Proof of Lemma 4. The sequence (w(|x,))), k even, contains a convergent
subsequence (W(|xy,>)), k& even, with the limit point #, which, according to
Lemmas 1 and 3, has coordinates that obey the set of linear equations

wi(Wet + w_(W)e~ = ¢,
wo (W) + w_(®) = 1

Its solution is, of course, unique, and by an argument similar to the one
applied in the last lemma it can be deduced that the sequence (w(|xy))),
k even, itself converges to w. Since ¥ (W) > 0, obviously both coordinates
w, (W) and w_(1®) must be different from zero. This proves Lemma 4.

The proof of Lemma 5 is a matter of elementary calculus and is omitted
for brevity.

4, NUMERICAL ASPECTS

The iteration scheme (2.1) can be exploited numerically. A preliminary
calculation was performed with a 100 x 100 random matrix. On account of
equation (2.7), one expects ;; to increase rapidly, especially during the initial
iterations. The increment of i;; can be regarded as a measure of noninvariance
of the subspace I, under H. Figure 2 shows the plot of the number of
iterations k versus ¢u(|x;>), e, ¥, and ;.

) 12; Eag=1082 “301
2 10 Yooy = 122,11 7120 5
g 8 {110 8
Y {100 §
a
Lt 490
2 1 80
0 470
-2 1 60
A 450
B+ 440
gt 430
-10F {20
12k Eoin=-1118 110
10 20 30 40 50 60 70
iterations —=

Fig. 2. Plot of the numerical example mentioned in the text.
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The diagonalization of h,, after each iteration, however, is not necessary
in applying the method. This is a major advantage as linear programming is
applicable.
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