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The square variance function of a finite-dimensional Hamil tonian H obeys 
a maximum principle that  leads to the determinat ion of its maximum and 
minimum eigenvalues. A systematic algori thm is presented that  generates a 
sequence of monotonically increasing values for the square variance. It  is 
shown that  the method converges to the exact two-dimensional eigenvalue 
problem determined by the lowest and highest eigenvalues. Preliminary 
numerical results are briefly outlined. 

INTRODUCTION 

A familiar result of elementary quantum mechanics states that the 
square variance of a finite-dimensional Hamiltonian attains its zeros for 
the eigenvectors of  the problem. However, the usefulness of  investigating 
the maximum of  the square variance has not yet been recognized. The 
consideration of  this question turns out to be a matter of  interest in its own 
right; moreover it proves to be a practical tool for the numerical solution of 
eigenvalue problems. 

With the aid of the maximum principle investigated in Section 1 of  
this paper, we can construct an iterative algorithm. As is demonstrated in 
Section 2, this algorithm yields the maximum (minimum) eigenvalue of  the 
Hamiltonian. One need assume only that the trial vector contains nonvanishing 
components of the corresponding eigenvectors. 

This paper is concerned mainly with the presentation of the basic 
theorems and their proofs. Detailed numerical results will be presented in a 
sequel, but a short review of  preliminary computational data is included in 
this paper. 
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1. THE MAXIMUM PRINCIPLE 

In what follows we will be concerned with the expectation value and 
square variance functions of  a Hermitian operator H:  R ~ -+ R ~. 

Introduce V~ c R~, t h e  set of vectors whose norm is unity. Then we 
define the functions 

~ :  V~ --~ R 

Ix> ~ ~0n(lx)): = ( x l H x )  = (H )x  

Ix> ~ . ( I x > ) :  = < H = ) x -  <H)x = 

As is well known from quantum mechanics, ~bn is a nonnegative function, the 
zeros of  ~bH occurring for the eigenvectors of  H. 

V~ is a compact set. Since ~bn is continuous it must assume its maximum 
(minimum) on Vs. Our aim is to derive a theorem on the precise location of  
these points. 

To simplify the demonstrations let us define the probability plane Wm as 
the set of  points with cartesian coordinates (Wl, . . . ;  win) that satisfy 

~ wv = 1, 0 ~< wv ~< 1 gv (1.1) 
V = I  

The eigenvalues of H constitute a finite ordered set 

E l < . . .  <Era, m <<. n 

E1 = Emin, Em =Em~x 

The respective eigenvectors are denoted as 

IE,,,> . . . . .  IE, .~I>,. . . ,  IE=.~,> 

Here k~ stands for the degeneracy of  E~. Identifying w~ with the quantum 
mechanical probability of finding Ev in a measurement 

k v  

w~(Ix>): = ~ I<E~.~lx>l = 
A = I  

~0~ and ~bn can be defined as functions on Wm in a natural way. 

m 

~0~(lx>) = ~=~1= w~(Ix>). & 
(1.2) 

$n(lx)) = w a ( l x > ) . E a  2 - w~ , ( l x>) 'E~ ,  
A = I  = 
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T o  state the m a x i m u m  principle for  ~b~, we must  specify the not ion of  
max imum.  ~ ~ Wm is called a m a x i m u m  of~bn if  it is a m a x i m u m  with respect  
to a sufficiently small Win-neighborhood of  ~. An  absolute m a x i m u m  wabs, 
however,  fulfills the condi t ion 

~ ( w )  < ~b~(w~bs) Vw e rVm 

Analogous  definitions can be in t roduced for  a min imum.  

Theorem 1 (Max imum Principle). 
(1.1) I f m  > 1, no inner poin t  o f  Wm can be a m i n i m u m  of  ~bn. The  

absolute  min ima  are the zeros of  ~bn. 
(1.2) I f m  = 2 there exists a unique m a x i m u m  of~bH at  wl = w2 = �89 
(1.3) I f m  > 2, no inner poin t  o f  Wm can be a m a x i m u m  of~b H. The  

absolute  m a x i m u m  is located on the bounda ry  a t  wl =Wm = �89 
(1.4) I f  m > 2, the only m a x i m u m  of  ~b~ on the bounda ry  o f  Wm is 

the absolute maximum,  
(1.5) The  only min ima  of~b H on Wm (m >>. 2) are the zeros of  ~bn. 

The  m a x i m u m  principle describes two fundamenta l  propert ies  of' ~b~. 
First, it can be applied as an error  measure  for  determining eigenvectors of  H. 
On the other  hand,  the p rob lem o f  finding bo th  the m a x i m u m  and m i n i m u m  
eigenvalue is solved by determining the unique m a x i m u m  of  ~b~. 

Proo f  o f  Theorem 1. In  the case m = 2 we have 

~bH(w) = wl.E~ 2 + w2.E2 2 - (w~.E~ + w2.Ez) 2 (1.3) 

subject to the subsidiary condi t ion 

wl + w2 = 1 (1.4) 

One then finds a m a x i m u m  at w~ = w2 = �89 The boundary  points  o f  
W2, namely  w~ = 1 and w2 = 1, are the zeros of  ~bH. This proves  s ta tement  
(1.2) and s ta tement  (1.1) in case m = 2. 

Let  us now deduce i tem (1.3). We have to solve the p rob lem 

~,  wa'Ea 2 - wa.Ea = extr (1.5) 

wa = 1 (1.6) 

This corresponds  to the set o f  equat ions 

~W; w;,E~ 2 - w~E~ + k - ~  w~ = O; c~ = 1 . . . . .  m (1.7) 

Er 2 - 2. DE~ + k = 0 (1.8) 
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Here k denotes the Lagrange parameter, and the abbreviation D = ~ waEa 
was used. However, the system of  m equations (1.8) leads to the apparent 
contradiction 

D = �89 (E~, + E~), V~,,~;u~,, 

So evidently no extrema can occur for the inner points of  Win. Since Wm is 
compact, ~bn attains its absolute maximum, which from the preceding 
reasoning must be a boundary point. Recalling the definition of Win, one sees 
that w = (wl  . . . . .  win) is a boundary point if and only if wa = 0 for at least 
one A. This means that Wab~ ~ Wm, the absolute maximum of ~bn on Win, can 
be regarded as an element of some properly chosen (m - 1)-dimensional 
probability plane. 

I f  m - 1 > 2 the same argument again applies. Proceeding this way by 
induction, we arrive at a problem reduced to dimensionality two. From 
proposition (1.2) we can then deduce that Wab~ must have two coordinates 
equal to �89 and all others zero. I f  we call the two occurring eigenvalues E+ 
and E_ (E+ > E_) and their respective probabilities w+ and w_, then 
straightforward computation yields 

~z-z(Wabs) = �88 -- E_) z 

To achieve the absolute maximum we have to select E_ = El,  E+ = Era. 
This proves our assertion. As inner points cannot be extrema on Win, m > 2, 
statement (1.1) is trivially true. 

The next point to be discussed is (1.4). Let us call the maximum in 
question Wmax. Repeating the induction procedure applied before, we find 
that Wmax must have coordinates w+(Wm~x) = w_(Wm~x) = �89 

Solving equation (1.6) for w, and inserting into equation (1.2) yields for 

W ~ Win: 

z -  - +  ( 1  . 
(1.9) 

Identity (1.9) expresses ~bn by a system of independent variables. The 
proof  will now be given by contradiction. 

Let E,  = E_ and suppose E+ # Era, the maximal eigenvalue of  H. Then 

a~bn = (Era - E+)(E, .  - E_) > 0 (1.10) 
~Wm wm~ 
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So in the direction of positive Wm the function increases locally on a 
Wm-neighbourhood of w~x. This contradiction leads to E+ = E,~. By 
differentiating with respect to wl, we can use similar reasoning to arrive at 
E _  = E1. 

The proof of proposition (1.5) is straightforward, since minima are not 
allowed in the interior of Win. 

Figure 1 illustrates the situation for Ws. One further remark on an 
orthogonality theorem is in order. Let [max) e V~ be a maximum vector of 
Sn. Then from the maximum principle we may write 

Imax) = [El} + [Era} 
(1.11) 

H[max> = EI-]Ex) + E,~. ]Em) 

A label of degeneracy has been suppressed for simplicity. 
E1 and E,~ are functions of 9~,([max)) and Sn(lmax)): 

Em= 9~(]max)) + [~n(]max))] ~/2 
(1.12) 

E1 = 9n(]max>) - [$n([max>)] 1/2 

of course 

(Ellgm> = 0 (1.13) 

W2 

I 

Fig. 1. The plane W3. The lines of constant ~H are represented qualitatively. They 
visualize the assertions of the maximum principle. 
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Now replace lmax) by an arbitrary Ix) e V~ and define IE1), El, IEm), 
Em by the expressions (1.11), (1.12). Then the orthogonality relation (1.13) 
still holds, as can be seen by direct calculation. (We have to convince ourselves 
that I x)  is not an eigenvector of H so that system (1.11) can be uniquely 
solvable.) 

2. A SYSTEMATIC A L G O R I T H M  

The maximum principle leads us to the question of how to determine the 
maximum of ~b,~. A systematic algorithm is presented that provides a sequence 
of  monotonically ascending ~bH and, moreover, leads to the determination of 
the eigenvalues E1 and Era. 

Consider an arbitrary Ixo)E V~, which, however, must not be an 
eigenvector of  H. Given l xk) e V~ define 

Ixe+l): = (~bn(lxe))) -1/2"(Hlxe) - ~OH(lXe))" [xe)) (2.1) 

The two-dimensional subspace generated by ]xe) and I xk + 1) is denoted by 
I'e, and we introduce the orthogonal projection operator 

ee:  = Ixe><xel + Ixe+l><xk+ l (2.2) 

Next denote 

he: = Pc -+  Pe 

he : = PeHPe 

with eigenvalues ee + and ee- (ee + > ee-), and the corresponding eigenvectors 
lee + > and lee-)  respectively. Furthermore we write 

Hlxe+l> = h~lxe+~> + IRk> (2.3) 

which defines the vector IRk). Then the following theorem holds. 

Theorem 2. 

(2.1) O~(Ixo)) ~< q,n(lx,)) ~< " "  ~< 4,~(]xe)) ~< ' "  <~ lim ~a(lxe)) 
e--+ r 

(2.2) ~,bH(lxk)) = ~bH(]Xe+ 1)) if and only if Pe is an invariant subspace 
under H. 

(2.3) Assume 

wl([x0)) # 0, Wm(lXo)) r 0 (2.4) 

Then the following identities hold. 

lim ee- = E~, lim ek + = E m  (2.5) 
k ~ o o  k ~ m  
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Proof o f  Theorem 2. (2.1) On account  of  equat ion (2.3), we find 

~bn(lXk+l) ) = CH(IX~)) + (RkIR~) (2.6) 

which proves  the inequali ty in question. So (~bn([xk))) is a monotonica l ly  
ascending sequence, which converges since it is bounded.  Its  limit can be 
represented by the series 

r  = l im ~bn(IX~) ) = ~bn(lXo) ) + ~ (RklR~) (2.7) 

I t em (2.2) is an obvious consequence of  equat ion (2.6). 
The  p r o o f  of  par t  (2.3) will be decomposed  into several lemmas.  

Lemma 1. The following sequences converge. 

(~OH([Xk))), k even 

(~OH(IXk>)), k odd 

We define the limits as 

% : = l im ~H(IXk>), k even 
k - - ~  oo 

% :  = lim ~0H(IX~>), k odd 
h : - +  oo 

Lemma 2. The following limits are eigenvalues o f  H. 

e+:  = lim ek + = �89 + %) + [~b + �88 - %)211/2 

(2.8) 
e - :  = lira ek- = �89 + %) - [~b + �88 - %)ql/2 

Lemma 3. Unless Ea = e + or Ea = e - ,  the following limit condi t ion 
is satisfied. 

lira wa(lxk>) = 0 (2.9) 
,re - . .  0o  

Lernma 4. The following limits o f  the sequences exist and are all 
different f rom zero. 

(w+(lxk>)), k even, odd  

(w_([x~>)) k even, odd  

Lemma 5. The following recursion formula  holds. 

wa([xk + 1>) = (~bz([xk>))- 1. wa(lxk>). (Ea - ~vz(]xk>)) 2 (2.10) 
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The proof  of Theorem 2, part (2.3), now proceeds as follows. An easy 
consequence of statements (2.4) and (2.10) is 

Wm([Xk>) ~ 0 Vk 

wl(lx >) o Vk (2.11) 

On account of  Lemma 2, e + is an eigenvalue of H. By contradiction let 
us assume e + ~ E,,. Then applying Lemmas 3 and 4, we arrive at 

lim Wm(IXIr = 0 (2.12) 

Select ko sufficiently large so that for all k > ko 

e-  < gon([xk>) < e + (2.13) 

(see Lemma 3). Then (2.10), (2.11), and (2.13) yield 

Wra(IXk+l>) Wm(lXk>) (Era - CpH(IXk>)) 2 Wm(lXk>) (2.14) 
w+(lxk+l)) = w+([xk>) (e + - ~o~(Ix~))) 2 > w+([xk)) 

The sequence 

( Wm(IX~>)~ 

is hence strictly positive and monotonically increasing a contradiction with 
respect to equation (2.12). Thus the assertion e + = Em has been proved. The 
proposition e-  = E1 follows analogously. 

3. PROOFS OF THE LEMMAS 

Proof  o f  Lemma 1. We prove that (gOH([X~))), k even, is a Cauchy sequence. 
Going back to equations (2.1) and (2.3), we derive the relation 

Ixk+2} = ~" Ixg) + (~bH(lXk+l))) -1/2" IRk> (3.1) 

with the abbreviation 

A z = 1 - 

Consequently 

[rH(lx~ + 2>) -- ~0~(Ixk>)[ = (r + 1>))-1" I (RklaRk> -- (Rkl Rk>" ~o.(Ix~>)l 

<~ (~bH([Xo>))- 1. ( R d R k ) .  (Era -- El)  
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For  arbitrary even numbers k, k', we obtain 

to' 

f~,(Ix~,>) - ~0~(Ix~>)l ,< (r - El). ~ <RzIRz> (3.2) 
h = k  

The Cauchy property of  (~n(lxk>)), k even, now readily follows from the 
convergence of  series (2.7). A similar argument applies for the odd sequence. 

Proof ofLernma 2. Remember the coordinate representation 

w([ek+>) = (wl(le~+>) . . . . .  wm(le~+>)) z W~ 

Since Wm is compact, the sequence (w(lek+>)) possesses a convergent 
subsequence (w(le~k)>)), say, whose limit point is denoted by ~. From 
continuity of ~0n it follows that 

~0H(~) = e + 

On account of  the inequality ~bz(le~+>) ~< (Rz[Rk>, which is evident from 
direct calculation, we deduce 

~ , (~)  = 0, 

which implies that e + is an eigenvalue of  H. The same reasoning applies for 
e - ,  

Proof ofLemma 3. It is evident that the sequence (w(lek + >)) converges to 
~. For  suppose it does not; then we can find a subsequence (w(le~k)>) which 
remains outside an ~-neighbourhood of ~ which itself contains a convergent 
subsequence (w(]e~k)>)). According to the proof  of Lemma 2, its limit would 
also be ~, an apparent contradiction. So the sequence (w(le ~ + >)) converges to 
~. This means 

lim w~(lek+>) = 0, for E~ # e + 
~.-* oo 

and correspondingly 

lira wa(lek-> ) = 0, for Ea # e-  
k . - + ~  

Let us write 

Ixg> = a~. ]ek +> + bk. [ek-> 

So, up to a phase convention 

w~(lxk>) = (ak. [w~,(lek+ > )] 1/2 + bk. [w~(Iek->)]l/2) z 

Equation (3.3) leads in a straightforward manner to the desired result. 

(3.3) 
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Proof of  Lemma 4. The sequence (w(Ixk))), k even, contains a convergent 
subsequence (w([x~(e~))), k even, with the limit point if, which, according to 
Lemmas 1 and 3, has coordinates that obey the set of linear equations 

w+(~)e + + w_(#)e-  = ~e 

w + (c , )  + w _  ( ~ )  = 1 

Its solution is, of course, unique, and by an argument similar to the one 
applied in the last lemma it can be deduced that the sequence (w(lxk))), 
k even, itself converges to ~. Since ~bn(~) > 0, obviously both coordinates 
w+(r~) and w_(ff) must be different from zero. This proves Lemma 4. 

The proof of Lemma 5 is a matter of elementary calculus and is omitted 
for brevity. 

4. NUMERICAL ASPECTS 

The iteration scheme (2.1) can be exploited numerically. A preliminary 
calculation was performed with a 100 x 100 random matrix. On account of 
equation (2.7), one expects ~bn to increase rapidly, especially during the initial 
iterations. The increment of ~bn can be regarded as a measure of noninvariance 
of the subspace P~ under H. Figure 2 shows the plot of the number of 
iterations k versus ~b~(lxk)), ek +, and e~-. 
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Fig. 2. Plot of  the numerical example mentioned in the text. 
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The diagonalization of hg after each iteration, however, is not necessary 
in applying the method. This is a major advantage as linear programming is 
applicable. 
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